您好!歡迎訪問北京中航鼎力儀器設備有限公司網(wǎng)站!
全國服務咨詢熱線:

15120030588

article技術文章
首頁 > 技術文章 > 認識介電性能(1)——介電常數(shù)介質損耗

認識介電性能(1)——介電常數(shù)介質損耗

更新時間:2024-08-07      點擊次數(shù):620

介電常數(shù)作為描述介電材料儲能性能的主要參數(shù)之一,理解其對介電材料開發(fā)十分重要。"


  1. 介電性能是材料在電場作用下表現(xiàn)出的一系列物理特性,主要包括以下幾個方面:
      • 介電常數(shù)(Dielectric Constant:也稱為電容率或相對電容率,表示材料存儲電荷能力的量度。它是材料在電場中極化程度的表征,影響電容器的儲能能力。

      • 介質損耗(Dielectric Loss:在交流電場中,材料極化跟不上電場變化導致的能量損耗。介質損耗通常與介電常數(shù)一起用來描述材料的介電性能。

      • 介電強度(Dielectric Strength:材料能夠承受的最大電場強度而不發(fā)生擊穿或導電的性能。高介電強度意味著材料具有更好的絕緣特性。

      • 介電弛豫(Dielectric Relaxation:材料在電場作用下極化過程的時間依賴性,涉及極化和去極化的時間常數(shù)。

      • 擊穿電壓(Breakdown Voltage:材料開始導電的臨界電壓,是介電強度的量度。


  2. 01

  3. 概述


  4. 介電性能是指在電場作用下,表現(xiàn)出對靜電能的儲蓄和損耗的性質,通常用介電常數(shù)和介質損耗來表示。介電材料是放在平板電容器中增加電容的材料(圖1)。介電材料根據(jù)其分子或原子的電荷分布特性,可以分為極性介電材料和非極性介電材料。極性介電材料中,正粒子的質心與負粒子的質心不重合,存在偶極矩,分子形狀不對稱。非極性介電材料中,正粒子和負粒子的質心重合,分子中沒有偶極矩,分子形狀是對稱的。介電常數(shù)是描述某種材料放入電容器中增加電容器存儲電荷能力的物理量。
  5. 根據(jù)物質的介電常數(shù)可以判別高分子材料的極性大小。通常,相對介電常數(shù)大于3.6的物質為極性物質;相對介電常數(shù)在2.8~3.6范圍內(nèi)的物質為弱極性物質;相對介電常數(shù)小于2.8為非極性物質。如果有高介電常數(shù)的材料放在電場中,電場的強度會在電介質內(nèi)有可觀的下降。

     認識介電性能(1)——介電常數(shù)介質損耗


  1. 1電解質與儲能原理


    02


    定義及物理意義



  1. 介電材料的介電常數(shù),也稱為電容率或相對電容率,是表征電介質或絕緣材料電性能的一個重要參數(shù)。它用來描述材料在電場中存儲靜電能的相對能力。介電常數(shù)定義為在同一電容器中,使用該介電材料作為介質時的電容與在真空中作為介質時的電容的比值。
  2. 具體來說,介電常數(shù)表示為:
  3. εr=ε介質/ε真空

  4.      其中,ε介質是使用特定介電材料時電容器的電容,而ε真空是相同條件下真空作為介質時的電容。

  5. 介電常數(shù)的大小受分子偶極矩和可極化性的影響,它隨著這些性質的增大而增大。在實際應用中,高介電常數(shù)的材料可以更有效地增強電容器的電荷存儲能力,因此它們通常被用來制作高儲能密度的電容器。

03


影響因素
影響介電材料介電常數(shù)的因素有多個,以下是一些主要的影響因素:

分子極性:分子的極性越強,其分子間作用力也越強,從而導致介電常數(shù)的增加。

    • 偶極矩:分子極性通常由分子的偶極矩來表征,即正負電荷中心不重合導致的電荷分布不均勻。具有較大偶極矩的分子在外加電場中更容易被極化,從而增加材料的介電常數(shù)。
    • 極化機制:極性分子在電場中會發(fā)生電子云的位移,導致分子的極化。這種極化包括電子極化、原子極化和取向極化,它們共同貢獻于材料的整體極化,從而影響介電常數(shù)。
    • 分子間作用力:極性分子間的相互作用力(如偶極-偶極相互作用)通常比非極性分子間的相互作用力強。這種較強的分子間作用力可以增強分子間的耦合作用,進而提高介電常數(shù)。
    • 介電飽和:極性分子在電場中取向的能力會導致介電常數(shù)隨電場強度增加而增加,但當所有分子盡可能與電場方向一致時,將達到飽和,此時增加電場強度不再顯著增加介電常數(shù)。

分子大?。?/strong>分子越大,其電子云分布也越廣,極化程度越高,介電常數(shù)也越高。

    • 偶極矩:分子極性通常由分子的偶極矩來表征,即正負電荷中心不重合導致的電荷分布不均勻。具有較大偶極矩的分子在外加電場中更容易被極化,從而增加材料的介電常數(shù)。

    • 極化機制:極性分子在電場中會發(fā)生電子云的位移,導致分子的極化。這種極化包括電子極化、原子極化和取向極化,它們共同貢獻于材料的整體極化,從而影響介電常數(shù)。

    • 分子間作用力:極性分子間的相互作用力(如偶極-偶極相互作用)通常比非極性分子間的相互作用力強。這種較強的分子間作用力可以增強分子間的耦合作用,進而提高介電常數(shù)。

    • 介電飽和:極性分子在電場中取向的能力會導致介電常數(shù)隨電場強度增加而增加,但當所有分子盡可能與電場方向一致時,將達到飽和,此時增加電場強度不再顯著增加介電常數(shù)。

頻率:介電常數(shù)隨著頻率的增加而變化,對于多數(shù)材料而言,頻率升高時介電常數(shù)會降低。

    • 取向極化:在低頻電場中,極性分子有足夠的時間響應電場的變化并重新排列,導致較高的介電常數(shù)。隨著頻率的增加,分子取向跟不上電場的變化,導致介電常數(shù)降低。

    • 電子極化和原子極化:這些極化機制的響應時間非??欤瑤缀蹩梢运查g響應電場的變化,因此它們對頻率的變化不太敏感。

    • 界面極化:在復合材料中,界面極化(如空間電荷極化)可能會在頻率較高時變得不那么有效,因為電荷的積累和松弛過程跟不上電場的快速變化。

    • 松弛過程:許多材料的介電響應涉及松弛過程,如聚合物鏈的重排或離子的遷移。這些過程在低頻下可以充分發(fā)生,但在高頻下可能被抑制。

    • 介電弛豫:材料可能包含多個不同的極化機制,每個機制都有其特定的松弛時間和相應的頻率響應。在這些頻率附近,介電常數(shù)可能會出現(xiàn)顯著的變化。

    • 德拜弛豫:對于具有德拜弛豫(一種特殊的極化弛豫過程)的材料,介電常數(shù)會隨著頻率的增加而降低,且在德拜弛豫頻率處有一個明顯的下降。

溫度:溫度的變化會影響分子的熱運動,進而改變介電常數(shù)。例如,在純?nèi)軇w系中,隨著溫度的升高,分子運動加快、排布更加無序,體系偶極矩減小,從而介電常數(shù)越小。

    • 分子運動增加:隨著溫度的升高,分子的運動增加,導致分子間的相互作用減弱,這可能會減少材料的極化能力,從而降低介電常數(shù)。

    • 結構轉變:某些材料在特定的溫度下會發(fā)生相變,如從結晶態(tài)到非晶態(tài)的轉變,這可能會顯著改變其介電常數(shù)。

    • 極化機制的變化:溫度的升高可能會激活或抑制某些極化機制。例如,偶極取向極化可能隨著溫度的升高而減少,因為分子的熱運動使得它們難以與電場對齊。

    • 電子極化的變化:在某些材料中,電子極化對溫度非常敏感,溫度的升高會增加電子的熱運動,可能會增加或減少介電常數(shù),這取決于材料的具體電子結構。

    • 離子導電性:在離子導電材料中,溫度的升高會增加離子的移動性,從而增加材料的電導率,這可能會通過電極化過程間接影響介電常數(shù)。

填料的介電常數(shù):在聚合物基復合材料中,添加不同介電常數(shù)的填料會改變復合材料的介電性能。高介電常數(shù)的填料有助于提高復合材料的介電常數(shù),但同時也可能降低其擊穿強度和增加介電損耗。

    • 介電常數(shù)提升:向聚合物基體中添加具有高介電常數(shù)的填料是提高復合材料介電常數(shù)的主要策略。高介電常數(shù)填料的添加可以增加材料的整體極化能力,從而提升復合材料的介電常數(shù)。

    • 擊穿強度和介電損耗的權衡:雖然高介電常數(shù)填料可以提升介電常數(shù),但同時也可能降低復合材料的擊穿強度并增加介電損耗。這是因為高介電常數(shù)填料可能會在填料與聚合物界面間形成漏電流路徑。

    • 界面極化效應:填料的介電常數(shù)影響其與聚合物基體之間的界面極化。高介電常數(shù)填料有助于增強界面極化,從而提升復合材料的介電常數(shù),尤其是當填料的介電常數(shù)遠高于基體聚合物時。

界面極化:在復合材料中,填料與聚合物基體之間的界面極化對低介電常數(shù)填料的影響更為明顯。

    • 極化機制:界面極化是材料在電場作用下,由于界面處電荷分離而產(chǎn)生的極化現(xiàn)象。這種極化與材料的微觀結構和界面特性密切相關。

    • 界面面積增加:當填料粒徑減小到納米尺度時,填料與聚合物基體之間的界面面積顯著增加,導致更多的電子在界面上聚集,從而增強了界面極化,提升了復合材料的介電常數(shù)。

    • 界面缺陷:填料和聚合物基體之間的界面缺陷,如空隙和微裂紋,可能會增加局部電場強度,從而增強界面極化,但這也可能增加介電損耗。

聚合物結晶度:聚合物的結晶度會影響其介電性能,因為結晶區(qū)域和非結晶區(qū)域的極化能力不同.

    • 分子鏈排列:結晶區(qū)域中的聚合物分子鏈比非結晶區(qū)域更加有序排列,這種有序性可能會限制分子的取向極化,從而影響介電常數(shù)。

    • 極化能力:結晶區(qū)域的分子鏈運動受到限制,導致其極化能力降低。因此,結晶度較高的聚合物通常表現(xiàn)出比非結晶聚合物更低的介電常數(shù)。

    • 自由體積:結晶度的增加可能會減少聚合物中的自由體積,從而限制分子鏈的移動和旋轉,這也可能降低聚合物的極化能力。

    • 介電各向異性:結晶聚合物通常表現(xiàn)出介電各向異性,即在不同方向上的介電常數(shù)不同。結晶區(qū)域的有序性可能導致特定方向上的介電常數(shù)增加。

版權所有 © 2024 北京中航鼎力儀器設備有限公司(www.lesbianrecommend.com) All Rights Reserved    備案號:京ICP備16037590號-2    sitemap.xml    管理登陸    技術支持:智能制造網(wǎng)